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Abstract. Using the Fractal Theory of Motion in the form of Scale 

Relativity Theory with arbitrary constant fractal dimension, various behaviors of 

an ablation plasma are analyzed. More precisely, we show that in the expansion 

process of an ablation plasma three distinct “moments” are emphasized: the 

“Coulomb moment”, the “thermal moment” and the “cluster moment”. 
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1. From Differentiability to Non-Differentiability 

 in the Dynamics of an Ablation Plasma 

 

The ablation plasma (plasma produced by the laser-material interaction) 

can be assimilated to a complex system, taking into account both its structure 

and its functionality.  
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The classical models used in the description of the dynamics of such a 

plasma are based on the hypothesis of the differentiability of the dynamic 

variables that can characterize it (Badii and Politi, 1997; Michell, 2009). 

These models only partially describe the dynamics of ablation plasmas; 

the instabilities of the dynamics of these structures, however, involve non-

differentiable procedures. We will use non-differentiable mathematical models 

(Nottale, 2011; Mercheş and Agop, 2016) to describe dynamics in ablation 

plasmas. More precisely, in the following we will analyze various “dynamics” 

of the ablation plasma using the Fractal Theory of Motion in the form of Scale 

Relativity Theory in arbitrary and constant fractal dimension (Mercheş and 

Agop, 2016). 

 

2. Nonlinear Behaviors in the Expansion 

 of an Ablation Plasma 

 

The process of expansion of the ablation plasma contains in its 

evolution three “moments” and, implicitly, three more important components: 

first “the Coulomb moment”, then “the thermal moment” and, finally, the 

“cluster moment”. So, according to the superposition principle of scale 

resolutions, we must operate simultaneously with three scale resolutions, 

namely Coulomb scale resolution, thermal scale resolution and cluster scale 

resolution. In such a context, any global variable that will describe such 

dynamics will be the expression of the sum of three equivalent variables, one of 

Coulomb type, one of thermal type and other of cluster type. Next, let's “make 

explicit” each of these “moments”. 

 

i) Behaviors at Coulomb scale resolution 

The separation of electrical charges due to the interaction of laser 

radiation with matter induces a local electric field, whose equation of evolution 

is of the form (Jackson, 1999): 
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In previous relationships, the ablation plasma is characterized by 

electrical permittivity , magnetic permeability  and electrical conductivity . 
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“” is Laplace's operator, “” is the gradient operator, and “” is the 

divergence operator. 

Considering now that in Eq. (3) the method of separating variables can 

be applied, in the form: 

 

j 
c
(r ,t)=R   c r  Tc(t) (4) 

                       

it is transformed as follows: 

 
1

σ
 ∆R   c − ∇ ∇∙R   c  +ΛR   c=0 (5) 

 
𝜇𝜀

𝜍

𝑑2𝑇𝑐
𝑑𝑡2

+ 𝜇
𝑑𝑇𝑐
𝜕𝑡

+ Λ𝑇𝑐 = 0 (6) 

 
where Λ = 𝑐𝑜𝑛𝑠𝑡. > 0  is the constant of separation of variables. 

Solution of the Eq. (6), 

 
𝑇𝑐 = 𝑇0 𝑒𝑥𝑝 −𝛿𝑡 sin(Ω𝑡 + 𝜑)                              (7) 

 
where, 

𝜍

𝜀
= 2𝛿,    Ω =  Ω0

2 − 𝛿2 1/2,   Ω0
2 =

Λ𝜍

𝜇𝜀
 (8) 

   

𝑇0 = 𝑐𝑜𝑛𝑠𝑡. ,   𝜑 = 𝑐𝑜𝑛𝑠𝑡., Ω0 > 𝛿 
 

specifies that the current density of the ablation plasma at the Coulomb scale 

resolution (Coulomb component) has a damping oscillator type behavior.  

Its modes of oscillation are “dictated”, among others, and by the 

constant of separation of the variable . 

 
ii) Behaviors at thermal scale resolution  

Let us admit that the dynamics of the ablation plasma at thermal scale 

resolution are “dictated” by its fractal behavior. Then, according to the Theory 

of Scale Relativity in an arbitrary constant fractal dimension (Mercheş and 

Agop, 2016), such dynamics are described by the system of equations of fractal 

hydrodynamics, which in the one-dimensional case takes the form: 
  

𝜕𝑡𝑉 + 𝑉𝜕𝑥𝑉 = −𝜕𝑥  −2𝑚0𝜆
2 𝑑𝑡  4/𝐷𝐹  −2 ×

𝜕𝑥𝜕𝑥  𝜌 

 𝜌
                 (9) 

 

𝜕𝑡𝜌 + 𝜕𝑥 𝜌𝑉 = 0                                    (10) 
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Eq. (9) corresponds to the law of conservation of the specific 

momentum (momentum of the unit of mass), while Eq. (10) corresponds to the 

law of conservation of the density of states. In Eqs. (9) and (10) V defines the 

differential velocity, which is independent of the scale resolution, dt, while  

defines the density of states, which is dependent on the scale resolution, by 

means of the fractal velocity VF, 
 

𝑉𝐹 = 𝜆 𝑑𝑡  2/𝐷𝐹 −1𝜕𝑥 ln𝜌                               (11) 
 

with  the parameter associated with the fractal-non-fractal transition, DF the 

fractal dimension of the motion curve and m0 the rest mass of the fractal fluid 

entity. Let us also note that the specific fractal potential, 

 

𝑄 = −2𝑚0𝜆
2 𝑑𝑡  4/𝐷𝐹  −2 ×

𝜕𝑥𝜕𝑥  𝜌 

 𝜌
= −𝑉𝐹

2 −
𝜆 𝑑𝑡   2/𝐷𝐹 −1

2
𝜕𝑥𝑉𝐹       (12)  

 

a measure of the non-differentiability, induces the specific fractal force: 

 

𝐹𝑥 = −𝜕𝑥𝑄                                           (13) 
 

Next, let us obtain the solution of the system of differential Eqs. (9) and 

(10) for ablation plasma at thermal scale resolution (thermal component), free of 

any external constraints. For this we will impose initial and boundary conditions 

(we will follow the method from Mercheş and Agop, 2016).Thus, we will 

characterize the initial state of the thermal component both by the discrete value 

of the velocity, 
 

𝑉 𝑥, 𝑡 = 0 = 𝑉0                                        (14) 
 

as well as by the Gaussian distribution of positions (of parameter ): 

 

𝜌 𝑥, 𝑡 = 0 =
1

 𝜋𝛼
𝑒
− 

𝑥

𝛼
 

2

= 𝜌0(𝑥)                       (15) 

 

This means that, at time t = 0, the center of the distribution is at 
 𝑥 0 = 0 and has the velocity  𝑉 0 = 0. The boundary conditions are given by 

the relations: 
 

𝜌 𝑥 = +∞, 𝑡 = 0,     𝜌 𝑥 = −∞, 𝑡 = 0 = 0              (16) 
 

𝑉 𝑥 = 𝑉0𝑡, 𝑡 = 𝑉0                                 (17) 
 

Because for any given time the average value of the specific fractal 

force is zero, Eq. (9) can be separated as follows: 
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𝜕𝑥  
𝜕𝑥𝜕𝑥 𝜌

 𝜌
 =

2

𝑎 𝑡 2
 𝑥 − 𝑉0𝑡  (18) 

 

𝜕𝑡𝑉 + 𝑉𝜕𝑥𝑉 =
4𝑚0

2𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝑎 𝑡 2
 𝑥 − 𝑉0𝑡  (19) 

 
Integrating the Eq. (18) with the boundary conditions (16) implies the 

solution: 

𝜌 𝑥, 𝑡 =
1

𝜋𝑎(𝑡)
𝑒
−
 𝑥−𝑉0𝑡 

2

𝑎(𝑡)  (20) 

 

This function satisfies the initial condition (15) if the initial value of a(t) 

is of the form: 

𝑎 𝑡 = 0 = 𝛼2                                        (21) 
 

The insertion of the Eq. (20) into the continuity Eq. (10) specifies that, 

for 𝑥 = 𝑉0𝑡, we will have: 

 
1

2𝑎

𝑑𝑎

𝑑𝑡
=  𝜕𝑥𝑉 𝑥=𝑉0𝑡  

(22) 

 
Considering this last result, the differential equation for variable a(t) is 

obtained by “operating” with Eq. (19). The following results: 

 

𝑎
𝑑2𝑎

𝑑𝑡2
+

1

2
 
𝑑𝑎

𝑑𝑡
 

2

= 8𝑚0𝜆 𝑑𝑡 
 4/𝐷𝐹  −2 (23) 

 
The solution of the Eq. (23), with the initial condition (21), has the 

expression: 
 

𝑎 𝑡 = 𝛼2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝛼2
𝑡2 (24) 

 

Now, according to Eqs. (20) and (24), the density of states becomes: 

     
𝜌 𝑥, 𝑡 =

=
𝜋−1/2

 𝛼2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹  −2

𝛼2 𝑡2 
1/2

𝑒𝑥𝑝  −
 𝑥 − 𝑉0𝑡 

2

𝛼2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝛼2 𝑡2

  (25) 
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Similarly, by integrating the Eq. (19) with the initial condition (14) and 

the one on the boundary (17), the expression of speed is obtained: 
 

𝑉 𝑥, 𝑡 =
𝑉0𝛼

2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝛼2 𝑡𝑥

𝛼2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝛼2 𝑡2

 (26) 

          
Relations (25) and (26) represent the solution of the fractal 

hydrodynamics equation system for the thermal component of the ablation 

plasma. 

Using these solutions now, we find the expression of the current density 

of the ablation plasma at the thermal scale resolution (thermal component): 

 

𝐽𝑇 𝑥, 𝑡 = 𝜌 𝑥, 𝑡 𝑉 𝑥, 𝑡 = 
 

=
𝑉0𝛼

2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝛼2 𝑡𝑥

𝜋1/2  𝛼2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝛼2 𝑡2 
3/2

 𝑒𝑥𝑝  −
 𝑥 − 𝑉0𝑡 

2

𝛼2 +
4𝜆2 𝑑𝑡  4/𝐷𝐹 −2

𝛼2 𝑡2

  
(27) 

 
The relationship (27), with constraint: 
 

𝜏 ≪ 𝑡 ≪
𝑉0𝜏

2

𝑥
 (28) 

where 

𝜏 =
𝛼2

𝜆 𝑑𝑡  2/𝐷𝐹  −1
 (29) 

 

becomes: 

 

JT(x,t)→
V0α

5

π1/2λ
3 dt  6/DF -3t3

exp  −  
α

λ dt  2/DF -1
 

2

 
x

t
− V0 

2

  (30) 

 

From here, with notations, 
 

𝑥 = 𝑑,   𝑉0 = 𝜈,  
𝛼

𝜆 𝑑𝑡  2/𝐷𝐹 −1
 =

𝑚𝑖

2𝑘𝐵𝑇
 (31) 

    

the standard result is obtained (Cremers and Radziemski, 2006): 
 

𝐽𝑇(𝑡) →
1

𝑡3
𝑒𝑥𝑝  −  

𝑚𝑖

2𝑘𝐵𝑇
  

𝑑

𝑡
− 𝜈 

2

  (32) 
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iii) Behaviors at cluster scale resolution  

Let us admit that the dynamics of the ablation plasma at the cluster 

scale resolution are dictated by the diffusion processes. At this scale resolution 

since the total specific momentum is zero, 

 

𝑉 = −𝑉𝐹 = −𝜆 𝑑𝑡  2/𝐷𝐹 −1𝜕𝑥 ln𝜌                  (33) 
 

then the Eqs. (9) and (10) of the fractal hydrodynamic model in the form of the 

Theory of Scale Relativity in arbitrary constant fractal dimension are reduced to 

the fractal diffusion equation: 

 

𝜕𝑡𝜌 = 𝜆 𝑑𝑡  2/𝐷𝐹 −1𝜕𝑥𝜕𝑥𝜌                         (34) 
 

The solution of this equation, with proper initial and boundary 

conditions is of the form: 

 

𝜌 𝑥, 𝑡 =
𝑀

 4𝜋𝜆 𝑑𝑡  2/𝐷𝐹 −1  𝑡 1/2
𝑒𝑥𝑝  −

 𝑥 − 𝑥0 
2

4𝜆 𝑑𝑡  2/𝐷𝐹 −1 𝑡
  (35) 

 
where M and x0 are two integration constants. From here, using the relation 

(33), the expression of speed is obtained first: 

 

𝑉 𝑥, 𝑡 =
𝑥 − 𝑥0

2𝑡
 (36) 

    
then the expression of current density is obtained: 

 

𝐽𝐶𝐿 𝑥, 𝑡 = 𝜌 𝑥, 𝑡 𝑉 𝑥, 𝑡 =

=
𝑀 𝑥 − 𝑥0 

 16𝜋𝜆 𝑑𝑡  2/𝐷𝐹 −1 
1
2𝑡

3
2

𝑒𝑥𝑝  −
 𝑥 − 𝑥0 

2

4𝜆 𝑑𝑡  2/𝐷𝐹 −1 𝑡
  (37) 

 
In the notations: 
 

𝐷 = 𝜆 𝑑𝑡  2/𝐷𝐹 −1 ,     𝑥 ≡ 𝑑,   𝑥0 = 0 (38) 

 
and with the meanings from (Nottale, 2011) the standard result is obtained 

(Cremers and Radziemski, 2006): 

 

𝐽𝐶𝐿 𝑡 =
𝑀

 16𝜋𝐷𝑡   1/2 
 
𝑑

𝑡
 𝑒𝑥𝑝  −

𝑑

4𝐷
 
𝑑

𝑡
   (39) 
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iv) Behaviors at global scale resolution 

Assuming the functionality of the principle of superposition of the 

scales resolutions, the current density at the global scale resolution will be 

expressed as a sum of the current density at the Coulomb scale resolution, given 

by the relation (7), of the current density at the thermal scale resolution, given 

by the relation (32) and of the current density at the cluster scale resolution, 

given by the relation (38). The expression results: 
 

𝐽𝐺 = 𝐴𝑒𝑥𝑝 −𝛿𝑡 sin Ω𝑡 + 𝜑 + 𝐵𝑡−3𝑒𝑥𝑝  −  
𝑚𝑖

2𝑘𝐵𝑇
  

𝑑

𝑡
− 𝑣 

2

 + 

+𝐶𝑡−1/2  
𝑑

𝑡
 𝑒𝑥𝑝  −

𝑑

4𝐷
 
𝑑

𝑡
   

(40) 

 

where A, B and C are constant. 

 
3. Conclusions 

 
In our opinion, the three “behaviors” can describe the diversity of 

hydroxyapatite ablation plasma dynamics, which can be seen from ultra-fast 

imaging records. We mention that the “analyzes” of optical spectroscopy 

highlight the presence of the first two behaviors (Coulomb type and thermal 

type behavior). The third “behavior”, that is, the cluster type, requires, in order 

to be highlighted, completely special “techniques” (for example, shadowgraphy, 

infrared absorption, etc.), but we did not have these techniques used, 

considering that “imaging” is sufficient for the purpose pursued by us.  
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MODELAREA TEORETICĂ A DINAMICILOR 

 UNEI PLASME DE ABLAŢIE 

 

(Rezumat) 

 

Utilizând Teoria Fractală a Mişcării sub forma Relativităţii de Scară în 

dimensiunea fractală arbitrară şi constantă, sunt analizate comportamente variate ale 

unei plasme de ablaţie. Mai precis, se arată că expansiunea plasmei de ablaţie implică 

trei „momente” distincte: „momentul” Coulomb, „momentul termic” şi „momentul 

cluster”. 
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